March 7, 2019

To: David Casper
Chair, Subcommittee on Courses & Continuing, Part-Time, & Summer Session Education

From: Gregory Washington
The Stacey Nicholas Dean of Engineering

Re: UCI Request to Change the Name and Degree Title of the Materials Science Engineering Undergraduate Program to the Materials Science and Engineering Undergraduate Program

The Department of Materials Science and Engineering requests renaming the undergraduate major in 'Materials Science Engineering' to 'Materials Science and Engineering', effective Fall 2019. The same title change is requested for the minor.

This title is more consistent with the established naming of programs across the country around the world, and matches the title we use for our graduate M.S. and Ph.D. programs. With the formation of the Department, the faculty feel it is appropriate that the originally requested title now be granted to reinforce that the undergraduate and graduate programs form a single, unified discipline.

Please let me know if you need any additional information.

Sincerely,

[Signature]

Gregory Washington

cc: Michelle Aucoin, Senate Analyst, Subcommittee on Courses & Continuing, Part-Time, & Summer Session Education
Robin Jeffers, Director, Undergraduate Student Affairs, Samueli School of Engineering
Robert Cassidy, Director, CASA, Samueli School of Engineering
Priscilla Nguyen, Curriculum Management Specialist, Samueli School of Engineering
January 24, 2019

To: David Casper
 Chair, Subcommittee on Courses & Continuing, Part-Time, & Summer Session Education

Via: Michael Green
 Associate Dean for Undergraduate Student Affairs

From: Julie M. Schoenung, Professor and Chair
 Department of Materials Science and Engineering

Re: B.S. & Minor in Materials Science and Engineering

The Department of Materials Science and Engineering requests renaming the undergraduate major in 'Materials Science Engineering' to 'Materials Science and Engineering', effective Fall 2019. The same title change is requested for the minor. The request for this change has been voted on by the MSE faculty, receiving unanimous support. As Department Chair, I also strongly support this change.

This title is more consistent with the established naming of programs across the country and around the world, and matches the title we use for our graduate M.S. and Ph.D. programs. With the formation of the new Department of Materials Science and Engineering, the time is right to harmonize the program titles, in an effort to reinforce that the undergraduate and graduate programs form a single, unified discipline.

A change in program title will require some additional action with ABET, the program's accrediting body. The program has an accreditation visit in Fall 2019 and is conversing with ABET whether some or all of this action can take place during that visit provided that the new title appear in the 2019-2020 Catalogue.

Student catalogue rights would be respected, with students able to remain in the program until degree completion or given the choice of changing into the new title under the 2019-2020 Catalogue with no restrictions. Students that applied for Fall 2019 would matriculate under the new title.

cc: Michelle Aucoin
 Senate Analyst, Subcommittee on Courses & Continuing, Part-Time, & Summer Session Education
 Robin Jeffers, Director, Undergraduate Student Affairs, Samueli School of Engineering
 Robert Cassidy, Director, CASA, Samueli School of Engineering
 Priscilla Nguyen, Analyst, Samueli School of Engineering
REQUEST FOR APPROVAL OF NEW OR MODIFIED UNDERGRADUATE DEGREE REQUIREMENTS

School: Samueli School of Engineering
Department: Materials Science and Engineering

B.S. or B.A. in Materials Science and Engineering
Proposed Effective Date: Fall 2019

Minor/Concentration/Specialization/Emphasis in Materials Science and Engineering; Specialization in Biomaterials, Electronics Processing and Materials; Materials and Mechanical Design

State proposed degree requirements. For revision of existing programs, attach a copy of the present degree requirements as well as the proposed requirements with the changes underlined.

1. Renumbering CBEMS course designations in both B.S. and Minor sections throughout the Catalogue and Sample Program
2. Updating CBEMS H199 with ENGR H199 in Specialization in Electronics Processing and Materials and Specialization in Materials and Mechanical Design
3. Updating nominal units due to Chemistry lab unit increase

Rationale, including the effect, if any, on other academic units. (attach additional sheet if necessary)
Attach a statement of agreement from the Department Chair of affected units.

1. Courses for the major were previously housed in the Department of Chemical Engineering and Materials Science under the CBEMS subject designation. With the formation of the new Department of Materials Science and Engineering, courses will renumber under the EngrMSE subject designation in an effort to reinforce that the undergraduate and graduate programs form a single, unified discipline.
2. CBEMS H199 has been deactivated. CHP students take ENGR H199.

Faculty concerned for the purposes of this major

Faculty (see the guidelines for establishing undergraduate majors and minors http://www.senate.uc.edu/4_SenCom/EducPolicy/CEP%20Docs/CEP_Docs_index.html)

Faculty vote: # For 9 # Against 0 # Abstain 0 # Not voting 0

Was there student participation? Yes √ No

APPROVED:

Julie Schpenung, Department Chair
Date 3/8/2019

Michael Green, Associate Dean
Date 3/11/2019

Approved Effective: Fall 2019
Current

Undergraduate Major in Materials Science Engineering

Program Educational Objectives: Graduates of the Materials Science Engineering program will (1) establish a productive Materials Science and Engineering career in industry, government or academia; (2) apply critical reasoning and the requisite analytical/quantitative skills in seeking solutions to materials science and engineering problems; (3) promote innovation in materials development and design through effective leadership, skilled communications, and multidisciplinary teamwork; (4) exhibit a commitment to engineering ethics, environmental stewardship, continued learning, and professional development.

(Program educational objectives are those aspects of engineering that help shape the curriculum; achievement of these objectives is a shared responsibility between the student and UCI.)

Since the beginning of history, materials have played a crucial role in the growth, prosperity, security, and quality of human life. In fact, materials have been so intimately related to the emergence of human culture and civilization that anthropologists and historians have identified early cultures by the name of the significant materials dominating those cultures. These include the stone, bronze, and iron ages of the past. At the present time, the scope of materials science and engineering has become very diverse; it is no longer confined to topics related to metals and alloys but includes those relevant to ceramics, composites, polymers, biomaterials, nanostructures, intelligent materials, and electronic devices. In addition, present activities in materials science and engineering cover not only areas whose utility can be identified today, but also areas whose utility may be unforeseen. The services of materials scientists and engineers are required in a variety of engineering operations dealing, for example, with emerging energy systems, design of semiconductors and optoelectronic and nano devices, development of new technologies based on composites and high-temperature super-conductivity, biomedical products, performance (e.g., quality, reliability, safety, energy efficiency) in automobile and aircraft components, improvement in nondestructive testing techniques, corrosion behavior in refineries, radiation damage in nuclear power plants, and fabrication of advanced materials.

The undergraduate major in Material Science Engineering (MSE) provides students with a thorough knowledge of basic engineering and scientific principles. The undergraduate curriculum in MSE includes (a) a core of Chemistry, Physics, and Mathematics; (b) basic Engineering courses; (c) Materials and Engineering core; and (d) technical courses in Materials Science, Engineering, and Sciences.

Because of the interdisciplinary nature of MSE and its intimate relations with other Engineering disciplines (Aerospace, Biomedical, Chemical, Civil, Computer, Electrical, Environmental, and Mechanical Engineering), qualified students will be able to satisfy in a straightforward manner the degree requirements of their Engineering major and the MSE major.

Admissions

High School Students: See School Admissions information.

Transfer Students: Preference will be given to junior-level applicants with the highest grades overall, and who have satisfactorily completed the following required courses: two years of approved calculus, one year of calculus-based physics with laboratories (mechanics, electricity and magnetism), completion of lower-division writing, one year of general chemistry (with laboratory), statics, Materials Science Engineering, and one course in introductory programming. For course equivalency specific to each college, visit assist.org.

Students are encouraged to complete as many of the lower-division degree requirements as possible prior to transfer. Students who enroll at UCI in need of completing lower-division coursework may find that it will take longer than two years to complete their degrees. For further information, contact The Henry Samueli School of Engineering at 949-824-4334.
Requirements for the B.S. in Materials Science Engineering

All students must meet the University Requirements.
All students must meet the School Requirements.

Major Requirements
Mathematics and Basic Science Courses:
Core Courses:
- ENGR 1A: General Chemistry for Engineers
- or CHEM 1A: General Chemistry
- CHEM 1B-1C: General Chemistry and General Chemistry
- CHEM 1LC: General Chemistry Laboratory
- MATH 2A-2B: Single-Variable Calculus and Single-Variable Calculus
- MATH 2D: Multivariable Calculus
- MATH 3A: Introduction to Linear Algebra
- MATH 3D: Elementary Differential Equations
- MATH 2E: Multivariable Calculus
- PHYSICS 7C-7LC: Classical Physics and Classical Physics Laboratory
- PHYSICS 7D-7E: Classical Physics and Classical Physics
- PHYSICS 7LD: Classical Physics Laboratory

Basic Engineering or Science Elective Courses:
Select four (4) units from the following:
- BIO SCI 93: From DNA to Organisms
- BME 50A: Cell and Molecular Engineering
- CHEM 51A: Organic Chemistry
- EECS 70B: Network Analysis II
- ENGR 7A-7B: Introduction to Engineering I and Introduction to Engineering II
- ENGRCEE 20: Introduction to Computational Problem Solving
- ENGRMAE 52: Computer-Aided Design
- ENGRMAE 80: Dynamics
- or ENGRCEE 80: Dynamics
- PHYSICS 51A: Modern Physics
- STATS 7: Basic Statistics

Engineering Topics Courses:
Students must complete a minimum of 22 units of engineering design.
Core Courses:
- CBEMS 65A: Thermodynamics of Materials
- or ENGRMAE 91: Introduction to Thermodynamics
- CBEMS 65B: Diffusion in Materials
- or CBEMS 125B-CBEMS 125C
- or ENGRMAE 120
- CBEMS 154: Polymer Science and Engineering
CBEMS 155 Mechanical Behavior and Design Principles
CBEMS 155L Mechanical Behavior Laboratory
CBEMS 160 Advanced Lab in Synthesis of Materials
CBEMS 164 X-ray Diffraction, Electron Microscopy, and Microanalysis
CBEMS 164L X-ray Diffraction, Electron Microscopy, and Microanalysis Lab
CBEMS 165 Materials Kinetics and Phase Transformations
CBEMS 169 Electronic and Optical Properties in Materials
CBEMS 175 Design Failure Investigation
 Senior Design Project I
 and Senior Design Project II
 and Senior Design Project III
CBEMS 189A-189B-189C Network Analysis I
 Electric Circuits
 or ENGRMAE 60 Principles of Materials Science and Engineering
 ENGR 54 Mechanics of Structures
 ENGRMAE 10 Introduction to Engineering Computations
 ENGRMAE 30 Statics
 or ENGR 30 Statics
 or ENGRCEE 30 Statics
 ENGRMAE 150L Mechanics of Structures Laboratory

Engineering Electives:
Students must complete a minimum of five courses from:
BME 50A Cell and Molecular Engineering
BME 110A-110B Biomechanics I
 and Biomechanics II
BME 111 Design of Biomaterials
BME 120 Sensory Motor Systems
CBEMS 110 Reaction Kinetics and Reactor Design
CBEMS 130 Separation Processes
CBEMS 141 Nano-Scale Materials and Applications
CBEMS 158 Ceramic Materials
CBEMS 163 Computer Techniques in Experimental Research
CBEMS 174 Semiconductor Device Packaging
CBEMS 176 Surface and Adhesion Science
CBEMS 191 Materials Outreach
CBEMS 199 Individual Study
EECS 70B Network Analysis II
EECS 170B Electronics II
EECS 174 Semiconductor Devices
EECS 176 Fundamentals of Solid-State Electronics and Materials
EECS 180A Engineering Electromagnetics I
ENGR 165 Advanced Manufacturing
ENGRMAE 106 Mechanical Systems Laboratory
ENGRMAE 145 Theory of Machines and Mechanisms
ENGRMAE 147 Vibrations
ENGRMAE 151 Mechanical Engineering Design
ENGRMAE 152 Introduction to Computer-Aided Engineering
ENGRMAE 155 Composite Materials and Structures
ENGRMAE 157 Lightweight Structures
ENGRMAE 170 Introduction to Control Systems

Students select, with the approval of a faculty advisor, any additional engineering topics courses needed to satisfy school and department requirements.

Engineering Professional Topics Course:
ENGR 190W Communications in the Professional World
(The nominal Materials Science Engineering program will require 183 units of courses to satisfy all university and major requirements. Because each student comes to UCI with a different level of preparation, the actual number of units will vary. Dual engineering majors are reminded that they are required to satisfy all requirements of both majors individually. Students should not assume that courses for one, such as senior design, will satisfy the requirements of the other, without prior approval.)

1 ENGR 7A-ENGR 7B is available only to lower-division students. Both ENGR 7A-ENGR 7B must be taken to be counted as a Basic Engineering or Science Elective course.

Students majoring in MSE may elect, with approval of their faculty advisor, to use available engineering electives to complete one of the following specializations.

Specialization in Biomaterials:
Requires a minimum of 14 units from:
BME 50A Cell and Molecular Engineering
BME 110A-110B Biomechanics I and Biomechanics II
BME 111 Design of Biomaterials
BME 120 Sensory Motor Systems
CBEMS 154 Polymer Science and Engineering
CBEMS 199 Individual Study

Specialization in Electronics Processing and Materials:
Requires a minimum of 14 units from:
CBEMS 174 Semiconductor Device Packaging
CBEMS 199 Individual Study (up to 3 units; or CBEMS H199, up to 3 units)
EECS 70B Network Analysis II
EECS 170LA Electronics I Laboratory
EECS 174 Semiconductor Devices
ENGR 165 Advanced Manufacturing

Specialization in Materials and Mechanical Design:
Requires a minimum of 14 units from:
CBEMS 199 Individual Study (up to 3 units; or CBEMS H199, up to 3 units)
ENGRMAE 106 Mechanical Systems Laboratory
ENGRMAE 145 Theory of Machines and Mechanisms
ENGRMAE 147 Vibrations
ENGRMAE 151 Mechanical Engineering Design
ENGRMAE 152 Introduction to Computer-Aided Engineering
ENGRMAE 155 Composite Materials and Structures
Planning a Program of Study

A sample program of study chart for the major in Materials Science Engineering is available in the Undergraduate Student Affairs Office. Students should keep in mind that this program is based upon a sequence of prerequisites, beginning with adequate preparation in high school mathematics, physics, and chemistry. Students who are not adequately prepared, or who wish to make changes in the sequence for other reasons, must have their program approved by their faculty advisor. Materials Science Engineering majors must consult at least once every year with the academic counselors in the Undergraduate Student Affairs Office and with their faculty advisors.

Sample Program of Study — Materials Science Engineering

Freshman

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2A</td>
<td>MATH 2B</td>
<td>MATH 2D</td>
</tr>
<tr>
<td>ENGR 1A</td>
<td>CHEM 1B</td>
<td>CHEM 1C</td>
</tr>
<tr>
<td>ENGRMAE 10</td>
<td>PHYSICS 7C</td>
<td>CHEM 1LC</td>
</tr>
<tr>
<td>General Education</td>
<td>PHYSICS 7LC</td>
<td>PHYSICS 7D</td>
</tr>
<tr>
<td></td>
<td>General Education</td>
<td>PHYSICS 7LD</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3A</td>
<td>MATH 3D</td>
<td>MATH 2E</td>
</tr>
<tr>
<td>ENGR 30</td>
<td>CBEMS 65A</td>
<td>EECS 70A</td>
</tr>
<tr>
<td>ENGR 54</td>
<td>General Education</td>
<td>CBEMS 65B</td>
</tr>
<tr>
<td>PHYSICS 7E</td>
<td>General Education</td>
<td>Basic Engineering/Science Elective</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBEMS 165</td>
<td>CBEMS 155</td>
<td>CBEMS 175</td>
</tr>
<tr>
<td>ENGR 150</td>
<td>CBEMS 155L</td>
<td>Engineering Elective</td>
</tr>
<tr>
<td>ENGRMAE 150L</td>
<td>CBEMS 164</td>
<td>Engineering Elective</td>
</tr>
<tr>
<td>Engineering Elective</td>
<td>CBEMS 164L</td>
<td>General Education</td>
</tr>
<tr>
<td></td>
<td>General Education</td>
<td></td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBEMS 154</td>
<td>CBEMS 169</td>
<td>CBEMS 160</td>
</tr>
<tr>
<td>CBEMS 189A</td>
<td>CBEMS 189B</td>
<td>CBEMS 189C</td>
</tr>
<tr>
<td>ENGR 190W</td>
<td>Engineering Elective</td>
<td>Engineering Elective</td>
</tr>
<tr>
<td>General Education</td>
<td>General Education</td>
<td>General Education</td>
</tr>
</tbody>
</table>
Minor in Materials Science Engineering

The interdisciplinary field of materials science and engineering has become critical to many emerging areas of advanced technology and their applications. As a result, there are needs and opportunities for engineers and scientists with education and training in materials science and engineering. The goal of the minor in Materials Science Engineering (MSE) is to provide students at UCI with such education and training that will enable them, upon graduation, to not only participate in projects or programs of an interdisciplinary nature but also address challenging societal needs and complex technological advances.

Admission

Admission in the MSE minor requires a minimum 2.5 overall UCI GPA. Students are required to complete all prerequisites for required courses and selected electives. In particular, students need to complete the following courses before applying:

- CHEM 1A General Chemistry
- CHEM 1LE Accelerated General Chemistry Lab
- MATH 2D Multivariable Calculus
- MATH 2E Multivariable Calculus
- MATH 3A Introduction to Linear Algebra
- MATH 3D Elementary Differential Equations
- PHYSICS 7C Classical Physics
- PHYSICS 7LC Classical Physics Laboratory
- PHYSICS 7D Classical Physics
- PHYSICS 7LD Classical Physics Laboratory

Requirements for the Minor in Materials Science Engineering

The minor in Materials Science Engineering requires a total of seven courses—five required courses and two electives:

Required courses:
- CBEMS 155 Mechanical Behavior and Design Principles
- ENGR 54 Principles of Materials Science and Engineering

Select three of the following:
- CBEMS 165 Materials Kinetics and Phase Transformations
- CBEMS 169 Electronic and Optical Properties in Materials
- CBEMS 175 Design Failure Investigation
- CBEMS 199 Individual Study (contingent upon the availability of research positions in the Materials Science Engineering faculty’s research groups)

Electives:

Select two of the following:
- BME 110A-110B Biomechanics I and Biomechanics II
- BME 111 Design of Biomaterials
- BME 120 Sensory Motor Systems
- CBEMS 141 Nano-Scale Materials and Applications
- CBEMS 154 Polymer Science and Engineering
- CBEMS 158 Ceramic Materials
- CBEMS 163 Computer Techniques in Experimental Research
For students who plan to pursue a graduate degree in MSE, it is highly recommended that they take CBEMS 165 in addition to two of the following courses: CBEMS 169, CBEMS 175, or CBEMS 199.
Proposed

Undergraduate Major in Materials Science and Engineering

Program Educational Objectives: Graduates of the Materials Science and Engineering program will (1) establish a productive Materials Science and Engineering career in industry, government or academia; (2) apply critical reasoning and the requisite analytical/quantitative skills in seeking solutions to materials science and engineering problems; (3) promote innovation in materials discovery, development and design through effective leadership, skilled communications, and multidisciplinary teamwork; (4) exhibit a commitment to engineering ethics, environmental stewardship, continued learning, and professional development.

(Program educational objectives are those aspects of engineering that help shape the curriculum; achievement of these objectives is a shared responsibility between the student and UCI.)

Since the beginning of history, materials have played a crucial role in the growth, prosperity, security, and quality of human life. In fact, materials have been so intimately related to the emergence of human culture and civilization that anthropologists and historians have identified early cultures by the name of the significant materials dominating those cultures. These include the stone, bronze, and iron ages of the past. At the present time, the scope of materials science and engineering has become very diverse; it is no longer confined to topics related to metals and alloys but includes those relevant to ceramics, composites, polymers, biomaterials, nanostructures, intelligent materials, and electronic devices. In addition, present activities in materials science and engineering cover not only areas whose utility can be identified today, but also areas whose utility may be unforeseen. The services of materials scientists and engineers are required in a variety of engineering operations dealing, for example, with emerging energy systems, design of semiconductors and optoelectronic and nano devices, development of new technologies based on composites and high-temperature super-conductivity, biomedical products, performance (e.g., quality, reliability, safety, energy efficiency) in automobile and aircraft components, improvement in nondestructive testing techniques, corrosion behavior in refineries, radiation damage in nuclear power plants, and fabrication of advanced materials.

The undergraduate major in Material Science and Engineering (MSE) provides students with a thorough knowledge of basic engineering and scientific principles. The undergraduate curriculum in MSE includes (a) a core of Chemistry, Physics, and Mathematics; (b) basic Engineering courses; (c) Materials and Engineering core; and (d) technical courses in Materials Science, Engineering, and Sciences.

Because of the interdisciplinary nature of MSE and its intimate relations with other Engineering disciplines (Aerospace, Biomedical, Chemical, Civil, Computer, Electrical, Environmental, and Mechanical Engineering), qualified students will be able to satisfy in a straightforward manner the degree requirements of their Engineering major and the MSE major.

Admissions

High School Students: See School Admissions information.

Transfer Students: Preference will be given to junior-level applicants with the highest grades overall, and who have satisfactorily completed the following required courses: two years of approved calculus, one year of calculus-based physics with laboratories (mechanics, electricity and magnetism), completion of lower-division writing, one year of general chemistry (with laboratory), statics, an introductory Materials Science and Engineering, and one course in introductory programming. For course equivalency specific to each college, visit assist.org.

Students are encouraged to complete as many of the lower-division degree requirements as possible prior to transfer. Students who enroll at UCI in need of completing lower-division coursework may find that it will take longer than two years to complete their degrees. For further information, contact The Henry Samueli School of Engineering at 949-824-4334.
Requirements for the B.S. in Materials Science and Engineering

All students must meet the University Requirements.
All students must meet the School Requirements.

Major Requirements
Mathematics and Basic Science Courses:

Core Courses:

- ENGR 1A: General Chemistry for Engineers
- or CHEM 1A: General Chemistry
- CHEM 1B- 1C: General Chemistry and General Chemistry
- CHEM 1LC: General Chemistry Laboratory
- MATH 2A- 2B: Single-Variable Calculus and Single-Variable Calculus
- MATH 2D: Multivariable Calculus
- MATH 3A: Introduction to Linear Algebra
- MATH 3D: Elementary Differential Equations
- MATH 2E: Multivariable Calculus
- PHYSICS 7C- 7LC: Classical Physics and Classical Physics Laboratory
- PHYSICS 7D- 7E: Classical Physics and Classical Physics
- PHYSICS 7LD: Classical Physics Laboratory

Basic Engineering or Science Elective Courses:
Select four (4) units from the following:

- BIO SCI 93: From DNA to Organisms
- BME 50A: Cell and Molecular Engineering
- CHEM 51A: Organic Chemistry
- EECS 70B: Network Analysis II
- ENGR 7A- 7B: Introduction to Engineering I and Introduction to Engineering II
- ENGRCEE 20: Introduction to Computational Problem Solving
- ENGRMAE 52: Computer-Aided Design
- ENGRMAE 80: Dynamics
- or ENGRCEE 80: Dynamics
- PHYSICS 51A: Modern Physics
- STATS 7: Basic Statistics

Engineering Topics Courses:
Students must complete a minimum of 22 units of engineering design.

Core Courses:

- ENGRMSE 65A CBEMS 65A: Thermodynamics of Materials
- or ENGRMAE 91: Introduction to Thermodynamics
- ENGRMSE 65B CBEMS 65B: Diffusion in Materials
- or CBE 120B-CBE 120C
- or CBEMS 125B-CBEMS 125C
- or ENGRMAE 120
ENGR MSE 154 CBEMS 154
Polymer Science and Engineering
ENGR MSE 155 CBEMS 155
Mechanical Behavior and Design Principles
ENGR MSE 155L CBEMS 155L
Mechanical Behavior Laboratory
ENGR MSE 160 CBEMS 160
Advanced Lab in Synthesis of Materials
ENGR MSE 164 CBEMS 164
X-ray Diffraction, Electron Microscopy, and Microanalysis
ENGR MSE 164L CBEMS 164L
X-ray Diffraction, Electron Microscopy, and Microanalysis Lab
ENGR MSE 165 CBEMS 165
Materials Kinetics and Phase Transformations
ENGR MSE 169 CBEMS 169
Electronic and Optical Properties in Materials
ENGR MSE 175 CBEMS 175
Design Failure Investigation
ENGR MSE 189A-189B-189C
Senior Design Project I
and Senior Design Project II
and Senior Design Project III
EECS 70A
or ENGRMAE 60
Network Analysis I
or ENGR 54
Electric Circuits
ENGR 150
Principles of Materials Science and Engineering
ENGR 150
Mechanics of Structures
ENGRMAE 10
Introduction to Engineering Computations
ENGRMAE 30
Statics
or ENGR 30
Statics
or ENGRCEE 30
Statics
ENGRMAE 150L
Mechanics of Structures Laboratory

Engineering Electives:
Students must complete a minimum of five courses from:
BME 50A
Cell and Molecular Engineering
BME 110A-110B
Biomechanics I
and Biomechanics II
BME 111
Design of Biomaterials
BME 120
Sensory Motor Systems
CBE 110 CBEMS 110
Reaction Kinetics and Reactor Design
CBE 130 CBEMS 130
Separation Processes
ENGR MSE 141 CBEMS 141
Nano-Scale Materials and Applications
ENGR MSE 158 CBEMS 158
Ceramic Materials for Sustainable Energy
ENGR MSE 163 CBEMS 163
Computer Techniques in Experimental Research
CBE 187 CBEMS 174
Semiconductor Device Packaging
ENGR MSE 176 CBEMS 176
Surface and Adhesion Science
ENGR MSE 191 CBEMS 191
Materials Outreach
ENGR MSE 199 CBEMS 199
Individual Study
EECS 70B
Network Analysis II
EECS 170LA
Electronics I Laboratory
EECS 170B
Electronics II
EECS 174
Semiconductor Devices
EECS 176
Fundamentals of Solid-State Electronics and Materials
EECS 180A
Engineering Electromagnetics I
ENGR 165
Advanced Manufacturing
ENGRMAE 106
Mechanical Systems Laboratory
ENGRMAE 145
Theory of Machines and Mechanisms
Students select, with the approval of a faculty advisor, any additional engineering topics courses needed to satisfy school and department requirements.

Engineering Professional Topics Course:

ENGR 190W Communications in the Professional World

(The nominal Materials Science and Engineering program will require 184 units of courses to satisfy all university and major requirements. Because each student comes to UCI with a different level of preparation, the actual number of units will vary. Dual engineering majors are reminded that they are required to satisfy all requirements of both majors individually. Students should not assume that courses for one, such as senior design, will satisfy the requirements of the other, without prior approval.)

1 ENGR 7A-ENGR 7B is available only to lower-division students. Both ENGR 7A-ENGR 7B must be taken to be counted as a Basic Engineering or Science Elective course.

Students majoring in MSE may elect, with approval of their faculty advisor, to use available engineering electives to complete one of the following specializations.

Specialization in Biomaterials:

Requires a minimum of 14 units from:

- BME 50A Cell and Molecular Engineering
- BME 110A-110B Biomechanics I and Biomechanics II
- BME 111 Design of Biomaterials
- BME 120 Sensory Motor Systems
- ENGRMSE 154 CBEMS 454 Polymer Science and Engineering
- ENGRMSE 199 CBEMS 199 Individual Study

Specialization in Electronics Processing and Materials:

Requires a minimum of 14 units from:

- CBE 187 CBEMS 174 Semiconductor Device Packaging
- ENGRMSE 199 CBEMS 199 Individual Study (up to 3 units; or ENGR H199 CBEMS H199, up to 3 units)
- EECS 70B Network Analysis II
- EECS 170LA Electronics I Laboratory
- EECS 174 Semiconductor Devices
- ENGR 165 Advanced Manufacturing

Specialization in Materials and Mechanical Design:

Requires a minimum of 14 units from:

- ENGRMSE 199 CBEMS 199 Individual Study (up to 3 units; or ENGR H199 CBEMS H199, up to 3 units)
- ENGRMAE 106 Mechanical Systems Laboratory
- ENGRMAE 145 Theory of Machines and Mechanisms
- ENGRMAE 147 Vibrations
Planning a Program of Study

A sample program of study chart for the major in Materials Science and Engineering is available in the Undergraduate Student Affairs Office. Students should keep in mind that this program is based upon a sequence of prerequisites, beginning with adequate preparation in high school mathematics, physics, and chemistry. Students who are not adequately prepared, or who wish to make changes in the sequence for other reasons, must have their program approved by their faculty advisor. Materials Science and Engineering majors must consult at least once every year with the academic counselors in the Undergraduate Student Affairs Office and with their faculty advisors.

Sample Program of Study — Materials Science and Engineering

Freshman

Fall
- MATH 2A
- ENGR 1A
- ENGRMAE 10
- General Education

Winter
- MATH 2B
- CHEM 1B
- PHYSICS 7C
- PHYSICS 7LC
- General Education

Spring
- MATH 2D
- CHEM 1C
- CHEM 1LC
- PHYSICS 7D
- PHYSICS 7LD

Sophomore

Fall
- MATH 3A
- ENGR 30
- ENGR 54
- PHYSICS 7E

Winter
- MATH 3D
- ENGRMSE 65A CBEMS 65A
- General Education

Spring
- MATH 2E
- EECS 70A
- ENGRMSE 65B CBEMS 65B
- Basic Engineering/Science Elective

Junior

Fall
- ENGRMSE 165 CBEMS-165
- ENGR 150
- ENGRMAE 150L
- Engineering Elective

Winter
- ENGRMSE 155 CBEMS-155
- ENGRMSE 155L CBEMS-155L
- ENGRMSE 164 CBEMS-164
- ENGRMSE 164L CBEMS-164L
- General Education

Spring
- ENGRMSE 175 CBEMS-175
- Engineering Elective
- Engineering Elective
- General Education

Senior

Fall
- ENGRMSE 154 CBEMS-154
- ENGRMSE 189A CBEMS-189A
- ENGR 190W
- General Education

Winter
- ENGRMSE 169 CBEMS-169
- ENGRMSE 189B CBEMS-189B
- Engineering Elective
- General Education

Spring
- ENGRMSE 160 CBEMS-160
- ENGRMSE 189C CBEMS-189C
- Engineering Elective
- General Education
UNIT COUNT

Sample Program of Study — Materials Science and Engineering

Freshman

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2A</td>
<td>4 MATH 2B</td>
<td>4 MATH 2D</td>
</tr>
<tr>
<td>ENGR 1A</td>
<td>4 CHEM 1B</td>
<td>4 CHEM 1C</td>
</tr>
<tr>
<td>ENGRMAE 10</td>
<td>4 PHYSICS 7C</td>
<td>4 CHEM 1LC</td>
</tr>
<tr>
<td>General Education</td>
<td>4 PHYSICS 7LC</td>
<td>1 PHYSICS 7D</td>
</tr>
<tr>
<td></td>
<td>General Education</td>
<td>4 PHYSICS 7LD</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
</tr>
</tbody>
</table>

Sophomore

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3A</td>
<td>4 MATH 3D</td>
<td>4 MATH 2E</td>
</tr>
<tr>
<td>ENGR 30</td>
<td>4 ENGRMSE 65A CBEMS 65A</td>
<td>4 EECS 70A</td>
</tr>
<tr>
<td>ENGR 54</td>
<td>4 General Education</td>
<td>4 ENGRMSE 65B CBEMS 65B</td>
</tr>
<tr>
<td>PHYSICS 7E</td>
<td>4 General Education</td>
<td>4 Basic Engineering/Science Elective</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Junior

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGRMSE 165 CBEMS 165</td>
<td>3 ENGRMSE 155 CBEMS 155</td>
<td>4 ENGRMSE 175 CBEMS 175</td>
</tr>
<tr>
<td>ENGR 150</td>
<td>4 ENGRMSE 155L CBEMS 155L</td>
<td>1 Engineering Elective</td>
</tr>
<tr>
<td>ENGRMAE 150L</td>
<td>1 ENGRMSE 164 CBEMS 164</td>
<td>3 Engineering Elective</td>
</tr>
<tr>
<td>Engineering Elective</td>
<td>4 ENGRMSE 164L CBEMS 164L</td>
<td>2 General Education</td>
</tr>
<tr>
<td></td>
<td>General Education</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>14</td>
</tr>
</tbody>
</table>

Senior

<table>
<thead>
<tr>
<th>Fall</th>
<th>Winter</th>
<th>Spring</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGRMSE 154 CBEMS 154</td>
<td>4 ENGRMSE 169 CBEMS 169</td>
<td>4 ENGRMSE 160 CBEMS 160</td>
</tr>
<tr>
<td>ENGRMSE 189A CBEMS 189A</td>
<td>3 ENGRMSE 189B CBEMS 189B</td>
<td>3 ENGRMSE 189C CBEMS 189C</td>
</tr>
<tr>
<td>ENGR 190W</td>
<td>4 Engineering Elective</td>
<td>4 Engineering Elective</td>
</tr>
<tr>
<td>General Education</td>
<td>4 General Education</td>
<td>4 General Education</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

TOTAL: 483 184
Minor in Materials Science and Engineering

The interdisciplinary field of materials science and engineering has become critical to many emerging areas of advanced technology and their applications. As a result, there are needs and opportunities for engineers and scientists with education and training in materials science and engineering. The goal of the minor in Materials Science and Engineering (MSE) is to provide students at UCI with such education and training that will enable them, upon graduation, to not only participate in projects or programs of an interdisciplinary nature but also address challenging societal needs and complex technological advances.

Admission

Admission in the MSE minor requires a minimum 2.5 overall UCI GPA. Students are required to complete all prerequisites for required courses and selected electives. In particular, students need to complete the following courses before applying:

- CHEM 1A General Chemistry
- CHEM 1LE Accelerated General Chemistry Lab
- MATH 2D Multivariable Calculus
- MATH 2E Multivariable Calculus
- MATH 3A Introduction to Linear Algebra
- MATH 3D Elementary Differential Equations
- PHYSICS 7C Classical Physics
- PHYSICS 7LC Classical Physics Laboratory
- PHYSICS 7D Classical Physics
- PHYSICS 7LD Classical Physics Laboratory

Requirements for the Minor in Materials Science and Engineering

The minor in Materials Science and Engineering requires a total of seven courses—five required courses and two electives:

Required courses:

- ENGRMSE 155 CBEMS 155 Mechanical Behavior and Design Principles
- ENGR 54 Principles of Materials Science and Engineering
- Select three of the following:
 - ENGRMSE 165 CBEMS 165 Materials Kinetics and Phase Transformations
 - ENGRMSE 169 CBEMS 169 Electronic and Optical Properties in Materials
 - ENGRMSE 175 CBEMS 175 Design Failure Investigation
 - ENGRMSE 199 CBEMS 199 Individual Study (contingent upon the availability of research positions in the Materials Science Engineering faculty’s research groups)

Electives:

Select two of the following:

- BME 110A- 110B Biomechanics I and Biomechanics II
- BME 111 Design of Biomaterials
- BME 120 Sensory Motor Systems
- ENGRMSE 141 CBEMS 141 Nano-Scale Materials and Applications
- ENGRMSE 154 CBEMS 154 Polymer Science and Engineering
- ENGRMSE 158 CBEMS 158 Ceramic Materials for Sustainable Energy
- ENGRMSE 163 CBEMS 163 Computer Techniques in Experimental Research
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CBE 187 CBEMS-174</td>
<td>Semiconductor Device Packaging</td>
</tr>
<tr>
<td>ENGRMSE 191 CBEMS-191</td>
<td>Materials Outreach</td>
</tr>
<tr>
<td>CHEM 225</td>
<td>Polymer Chemistry: Synthesis and Characterization of Polymers</td>
</tr>
<tr>
<td>EECS 170A- 170B</td>
<td>Electronics I and Electronics II</td>
</tr>
<tr>
<td>ENGR 150</td>
<td>Mechanics of Structures</td>
</tr>
<tr>
<td>ENGR 165</td>
<td>Advanced Manufacturing</td>
</tr>
<tr>
<td>ENGRMAE 151</td>
<td>Mechanical Engineering Design</td>
</tr>
<tr>
<td>ENGRMAE 155</td>
<td>Composite Materials and Structures</td>
</tr>
<tr>
<td>ENGRMAE 157</td>
<td>Lightweight Structures</td>
</tr>
<tr>
<td>MATH 112A</td>
<td>Introduction to Partial Differential Equations and Applications</td>
</tr>
<tr>
<td>PHYSICS 112A</td>
<td>Electromagnetic Theory</td>
</tr>
<tr>
<td>PHYSICS 133</td>
<td>Introduction to Condensed Matter Physics</td>
</tr>
<tr>
<td>PHYSICS 135</td>
<td>Plasma Physics</td>
</tr>
</tbody>
</table>

1 For students who plan to pursue a graduate degree in MSE, it is highly recommended that they take ENGRMSE 165 CBEMS-165 in addition to two of the following courses: ENGRMSE 169, ENGRMSE 175, or ENGRMSE 199, CBEMS 169, CBEMS 175, or CBEMS 199.